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Chapter One 

Chapter 1 

General introduction 

 

1.1. Autophagy and its molecular mechanisms 

Macroautophagy (hereafter, autophagy) is an evolutionarily conserved and self-

consumption process that degrades cellular organelles and proteins and maintains cellular 

biosynthesis during nutrient deprivation or metabolic stress [1–4]. Accumulating evidence has 

indicated the importance of autophagy in various human diseases [2–4]. The steps in autophagy 

are initiation, phagophore elongation, autophagosome formation and maturation, 

autophagosome fusion with the lysosome, and proteolytic degradation of the contents (Fig. 1.1) 

[1–4]. The products of degradation are recycled back into the cytosol and are reused to enhance 

cell survival during nutrient deprivation. In response to starvation, autophagy provides a 

nutrient source, promoting cell survival; however, autophagy is also induced by a broad range 

of other stressors and can degrade protein substrates, oxidized lipids, and damaged organelles 

[1–5]. 

The entire autophagy process is complex and involves many critical proteins. Among these, 

microtubule-associated protein light chain 3 (LC3) and sequestosome 1/p62 (p62) are 

responsible for autophagy’s membranes remodeling and trafficking events (Fig. 1.1) [6–12]. 

LC3 is an autophagosome membrane-bound protein that was first found in mammals [6]. 

Although there are several proteins that bind to the phagophore and autophagosome membranes, 

LC3 is widely used as a standard marker for these membranes because its binding is particularly 

stable [6]. After LC3 is synthesized as proLC3, it is immediately cleaved by cysteine protease 

to form LC3-I. Covalent binding of phosphatidylethanolamine to LC3-I results in LC3-II, 

which localizes to the phagophore and autophagosome membranes. The amount of LC3-II is 
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proportional to the number of autophagosomes present within the cell [6,7]. The protein p62 is 

a multifunctional signaling molecule involved in a variety of cellular pathways [8–12] that 

contains an ubiquitin-associated (UBA) domain for binding to ubiquitinated proteins. The 

presence of the UBA domain enables p62 to serve as an adaptor for selective autophagy of 

ubiquitinated substrates [8]. In addition, p62 itself can translocate not only to the phagophore 

membrane but also to the autophagosome formation site, even doing so independently of LC3 

binding [12]. Therefore, p62 is a critical autophagic substrate and is widely used as an indicator 

of autophagic degradation [13]. Moreover, beclin-1 is also one of the most important proteins 

for autophagy. While beclin-1 is generally ubiquitously expressed, it can also stimulate 

autophagy when overexpressed in mammalian cells [14]. It is known that beclin-1 is directly 

phosphorylated by AMP-activated protein kinase (AMPK) to induce autophagy [15]. Thus, an 

increase in the expression levels of p-beclin 1 indicates induction of autophagy. 

The number of autophagosomes is known as an indicator of the level of autophagic activity. 

However, only the assessment of autophagosome numbers is not enough to monitor reliable 

autophagy steps because that the autophagosome is an intermediate structure in the dynamic 

process of autophagy. The analysis of the degradation of autophagic substrates inside the 

lysosome, which is a phenomenon of final step of autophagy, is a more reliable indicator of 

autophagy. Most studies of the autophagy process have examined the effects of 

inducers/inhibitors on autophagy-related proteins by immunoblotting analysis, and then 

observed these proteins by microscopic analysis. 
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Figure 1.1. Schematic diagram to illustrate the process of autophagy and in the role of 

LC3-II, p62, and beclin-1. Protein substrates (a portion of cytoplasm, including organelles) 

are enclosed by a phagophore or isolation membrane to form an autophagosome. The outer 

membrane of the autophagosome subsequently fuses with the lysosome, and the internal 

material is degraded in the autolysosome. LC3-II is present both inside and outside of the 

autophagosome membrane, and the amount of LC3-II is proportional to the number of 

autophagosomes present in the cell. On the other hand, p62 is localized only inside the 

autophagosome in the autophagy process, thus the amount of p62 is widely used as an indicator 

of autophagic degradation. While beclin-1 is generally ubiquitously expressed, which can also 

stimulate autophagy when overexpressed. Beclin-1 is directly phosphorylated by AMPK to 

induce autophagy. 
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1.2. Relationship between autophagy and cancer 

In contrast to normal cells in tissues, tumors often locate within an environment deprived 

of nutrients, growth factors, and oxygen as a result of insufficient or abnormal vascularization. 

Thus, autophagy is important for supporting tumor growth (Fig. 1.2) [16–19]. In cancers, both 

the upregulation and downregulation of autophagy have been observed, which indicates its dual 

oncogenic and tumor-suppressing properties during malignant transformation [18, 19]. Liver 

cancer is the second leading cause of cancer-related death and the sixth most diagnosed cancer 

worldwide [20]. Autophagy plays multiple roles in maintaining liver homeostasis. In the 

absence of autophagy-related genes -5 and -7, which are key genes involved in autophagy 

initiation, nonfunctional proteins and organelles accumulate in liver cells [21]. It has been 

reported that autophagy-related gene 7-conditional knockout mice developed hepatomegaly and 

different metabolic liver disorders [22]; therefore, autophagy is important for suppressing 

tumorigenesis in the liver. It has been reported that in advanced hepatocellular carcinomas, 

autophagy plays an oncogenic (pro-survival) role observed as an increased LC3-II expression 

levels that positively correlates with progression of malignancy and a poor prognosis [23]. 
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The role of autophagy in cancer is complex because it depends on tumor type, stage, and 

genetic context. In addition, autophagy acts potently to either promote or inhibit tumorigenesis, 

leading to a complex picture of the relationship between autophagy and cell proliferation [24]. 

To implement an attractive tool for cancer therapy, further studies to elucidate the role of 

autophagy in cancer will be required. However, at present, there have been few reports of 

compounds with modulation of autophagy. Therefore, it would be desirable if more such 

compounds could be discovered. 

  

Figure 1.2. High metabolic demand of cancer cell and activation of autophagy. Tumor 

cells are exposed to metabolic stress due to their high metabolic demand. To respond those, 

several tumor cells activate their own autophagy to produce the amino acids for the energy 

production.  
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1.3. Autophagy modulators 

For medical purposes, it is valuable to identify compounds that induction or inhibition of 

autophagy [1-5, 13, 16-19, 23–28]. Autophagy inducers may have specific value in certain 

neurodegenerative diseases, some infectious diseases, and cytoprotection [1-5, 27]. The most 

potent known physiological inducer of autophagy is starvation (amino acid withdrawal), which 

induces autophagy within 1 h after starvation in most cell lines [13]. The mammalian target of 

rapamycin (mTOR) is known as a potent suppressor of autophagy [13]. Drugs or signals that 

modulate autophagy can be divided into two categories, depending on whether they act via 

mTOR or not [13, 27]. Rapamycin and its analogs CCI-779, which are mTOR inhibitors, and 

torin 1, which is an ATP-competitive inhibitor of mTOR, are well-known as mTOR-dependent 

autophagy inducers [13, 27]. On the other hand, several compounds have been reported to 

induce autophagy without the involvement of mTOR. Lithium and carbamazepine induce 

autophagy through inhibition of inositol and inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) levels 

[13, 27, 28]. It is also reported that trehalose induces autophagy by inhibition of solute carrier 

2A (SLC2A) and activation of 5' adenosine monophosphate-activated protein kinase [13, 19, 

27]. Metformin, a widely used antidiabetic agent, activates AMPK and induces autophagy [19, 

27, 28]. It is notable that neither mTOR-independent nor mTOR-dependent inhibitors are 

specific inducers of autophagy. In addition to autophagy activation, these compounds affect a 

wide range of cellular responses, particularly protein synthesis and cellular metabolism [13, 25]. 

For example, lithium attenuates autophagy through glycogen synthase kinase-3β inhibition 

(which is mTOR-dependent); therefore, if used to activate autophagy, lithium should always be 

combined with mTOR inhibitors [13]. 

On the other hand, it has been suggested that autophagy inhibition may be valuable in 

cancers [1-5, 13, 16-19, 21-28]. In addition, preclinical evidence has demonstrated the 

effectiveness of inhibiting autophagy to enhance chemotherapy-induced cytotoxicity [19, 25-
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27]. Autophagy inhibitors can be divided according to whether inhibition occurs before or after 

autophagosome formation. In general, inhibition of autophagosome formation is recognized as 

early-stage inhibition, and inhibition of the degradation step after autophagosome formation is 

recognized as late-stage inhibition [24, 27, 28]. Because autophagosome formation requires 

class III phosphatidylinositol 3-kinase (PI3K) activity, inhibitors of PI3K, such as 3-

methyladenine (3-MA), wortmannin, and LY294002, inhibit autophagy at an early-stage [13, 

19, 28]. On the other hand, chloroquine (CQ), hydroxychloroquine (HCQ), bafilomycin A1, 

ammonium chloride, and Lys05 are known as suppressors at the late-stage of autophagy [13, 

19, 24-28]. The use of CQ and HCQ is one of the most commonly used pharmacological 

approaches to inhibit autophagy in vitro and vivo [18, 19, 24-28]. HCQ is the preferred analog 

of CQ because of its enhanced potency and limited side effects when compared with CQ [29]. 

In addition, HCQ is one of the leading compound for anticancer drug development by 

modulating an autophagy [26]. CQ and HCQ are lysosomotropic agents with an extensive range 

of biological effects. CQ and HCQ accumulate in acidic lysosomes and increase the pH. 

Alteration of pH causes the inhibition of lysosomal hydrolases and the prevention of 

autophagosomal fusion and degradation, which can result in the inhibition of the autophagy 

process [18, 19, 25, 26, 29]. A large number of current clinical trials using HCQ indicates the 

enormous relevance of combinatory treatments with autophagy inhibition to overcome 

resistance to existing cancer therapies (Table 1.1) [19, 25, 26]. Moreover, although 3-MA is an 

early-stage inhibitor, the concentration is very high to inhibit autophagy process [13]. Therefore, 

it would be beneficial if a greater number of potent inhibitors affecting the early-stage of 

autophagy could be discovered. 
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Chapter One 

1.4. Natural products modulating autophagy 

Recent studies have shown that natural products have beneficial effects on cancer therapy 

through autophagy [30–34]. Most of this research has reported that natural products induce 

autophagy in cancer cells. Berberine (BBR) (Fig. 1.3), an isoquinoline alkaloid isolated from 

Coptis chinensis, induces autophagic cell death by inhibiting the mTOR complex 1 through 

AMPK activation in human hepatocellular carcinoma HepG2 cells [30]. BBR was also reported 

to induce autophagic cell death by enhancing glucose-regulated protein 78 levels in HepG2 

cells and human colon carcinoma HCT-116 and DLD1 cells [31]. 

 

 

 

 

 

 

 

Zanthoxylum fruit extracts from the Japanese pepper plant Zanthoxylum piperitum 

enhance autophagic cell death through the phosphorylation of c-Jun N-terminal kinase in DLD1 

cells [32]. On the other hand, it has recently been indicated that natural products also have 

beneficial effects on cancer therapy by inhibition of autophagy. RA-XII, a natural cyclopeptide 

isolated from Rubia yunnanensis, suppresses protective autophagy to enhance apoptosis 

through AMPK/mTOR/70 kDa ribosomal protein S6 kinase pathways in HepG2 cells [33]. 

Figure 1.3. Chemical structures of BBR. 
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Chapter One 

Moreover, phyllanthusmins, which are isolated from various Phyllanthus species, inhibit late-

stage autophagy by reducing lysosomal acidification, similar to the effects of bafilomycin A1 

inhibiting autophagy at late-stage, and followed by apoptotic cell death in high-grade serous 

ovarian cancer (OVCAR3 and OVCAR8) cells [34]. These demonstrate the importance of 

identifying the modulators from natural products to intensify cancer therapy strategies that 

modulating autophagy. 
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Chapter One 

1.5. Purpose of this thesis 

The purpose of this thesis is to discover natural products that suppress cancer cell 

proliferation and autophagy modulation by screening our crude extract library based on 

traditional medicine and analyzing the molecular mechanisms of the products identified. This 

thesis is divided into four experimental chapters. First, in Chapter 2, we screened crude drug 

extracts to identify the extracts that modulated autophagy and cell proliferation in HepG2 cells. 

Subsequently, we demonstrated that the four extracts identified through screening showed 

inhibition of autophagy with high levels of antiproliferative activity. In Chapters 3, 4, and 5, we 

identified the active compounds that modulating autophagy in the four extracts and clarified 

their molecular mechanisms. 
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Chapter Two 

Chapter 2 

Screening of extracts prepared from crude drugs for autophagy-

mediated cell survival of the human hepatocellular carcinoma cell 

line HepG2 

 

2.1. Introduction 

In Chapter 2, we screened 130 extracts prepared from different crude drugs in a 

comprehensive search for crude drugs able to modulate autophagy. Our laboratory has a crude 

drug extract (hereafter, crude extract) library containing these 130 different crude drugs (Table 

2.1). These crude drugs are based on traditional medicines, including Japanese Kampo 

medicines. Although several biological activities of the crude drugs used in Kampo medicine 

have been evaluated, few studies have investigated their effects on autophagy. 

Human hepatocellular carcinoma cell lines (HCC) such as HepG2 cells have long been 

used for autophagy research and are known to be highly sensitive to autophagy [1-7]. It is also 

known that several types of cancer cell are resistant to chemotherapeutic agents that are potent 

apoptosis inducers [8]. HCC including HepG2 cells are resistant to apoptosis because of the 

high expression of B-cell lymphoma-extra-large, which is an antiapoptotic member of the B-

cell lymphoma-2 (Bcl-2) family [9]. Therefore, HepG2 cells are suitable for this study to 

identify crude extracts modulating autophagy under conditions of apoptosis resistance. 

We first established an assay for analyzing autophagy and antiproliferation using 3-MA, 

CQ, and BBR as compounds that modulate autophagy in HepG2 cells. Next, we screened 130 

different crude extracts. Finally, we investigated the effects of the selected crude extracts on 

cell proliferation and autophagy modulation. 
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Chapter Two 

2.2. Materials and methods 

2.2.1. Preparation of crude extracts 

All crude drugs were purchased from one of the following manufacturers, respectively; 

Daido Pharmaceutical Co., Ltd. (Daido: Toyama, Japan); Kinokuniya Han Pharmacy 

(Kinokuniya: Tokyo, Japan); Kojima Kampo Co., Ltd. (Kojima: Osaka, Japan); MATSUURA 

YAKUGYO Co., Ltd. (Matsuura: Aichi, Japan); Tochimoto Tenkaido Co., Ltd. (Tochimoto: 

Osaka, Japan); Takasago Pharmaceutical Co., Ltd. (Takasago: Osaka, Japan); or UCHIDA 

WAKANYAKU Ltd. (Uchida: Tokyo, Japan). See Table 2.1 for details. All crude drug samples 

met the grade standards of the Japanese Pharmacopoeia 17th Edition (Pharmaceutical and 

Medical Device Regulatory Science Society of Japan, 2016) or the Japanese standards for non-

Pharmacopoeial crude drugs 2018. The quality managers of each manufacturer identified and 

certificated the plant species. Five grams was extracted from each crude drug overnight at room 

temperature using methanol (MeOH). The supernatant was evaporated under nitrogen gas to 

obtain the crude extract. The crude extracts were dissolved in dimethyl sulfoxide (DMSO) as a 

stock solution at a concentration of 100 mg/mL and stored at −20 °C. 

 

2.2.2. Reagents 

BBR (purity > 90%), Etoposide (ETP, purity > 98%), and 3-MA (purity > 98%) were 

purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). CQ (purity > 

98%) was purchased from Nacalai Tesque Industries (Kyoto, Japan). Antibodies against LC3B 

and p62 were obtained from Cell Signaling Technology (Beverly, MA, USA). The antibody 

against β-actin and RIPA lysis buffer were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). Fetal bovine serum (FBS) was purchased from GIBCO (Gaithersburg, MD, 

USA). All other materials were obtained from FUJIFILM Wako Pure Chemical Corporation. 
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2.2.3. Cell culture and treatment 

HepG2 cells were obtained from the RIKEN BioResource Center Cell Bank (Ibaraki, 

Japan). The cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% FBS and 1% penicillin-streptomycin-L-glutamine and incubated at 37 °C with 5% 

CO2 under fully humidified conditions. During the cell treatments, the concentration of DMSO 

in the cell culture medium did not exceed 0.2% (v/v), and the controls were always treated with 

the same amount of DMSO as was used in the corresponding experiments. 

 

2.2.4. Western blot analysis 

Cells (1 × 106 cells/dish) were plated on 6 cm dishes. After replacing with fresh medium, 

the cells were treated with each crude extract or BBR for various time periods, after which they 

were harvested and lysed in RIPA lysis buffer containing protease and phosphatase inhibitors. 

After centrifugation for 15 min at 12,000 × g and 4 °C, the protein content of the samples was 

determined using a dye-binding protein assay kit, following the manufacturer’s instructions 

(Bio-Rad, Richmond, CA, USA). Equal amounts of lysate protein were subjected to SDS-PAGE. 

The proteins were electrotransferred to PVDF membranes and detected as previously described 

[10]. BBR was then used as a positive control [3,4]. The relative intensity of the indicated band 

was quantified using ImageJ software (1.50i; Java 1.6.0_24 (64-bit), National Institutes of 

Health, Bethesda, MD, USA), and the value was normalized to corresponding loading control 

and expressed as the fold change in the control group. 

 

2.2.5. Determination of cell proliferation 

Cell proliferation was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. The number of 0.9 × 104 cells/well were cultured 

on 96-well plates. After replacing the original medium with a fresh medium, the cells were 
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treated with various concentrations of each crude extract for 24 h. At the end of treatment, 10 

μL of 5 mg/mL MTT solution was added to each well, and the cells were incubated for another 

4 h. The precipitated MTT-formazan was dissolved in 100 μL of 0.04 N HCl-isopropanol, and 

the amount of formazan was measured at 595 nm using an iMark microplate reader (Bio-Rad, 

Tokyo, Japan). Cell proliferation was expressed as a percentage of that for the control culture. 

 

2.2.6. Statistical analysis 

All data were derived from at least three independent treatment repetitions. The results are 

expressed as the mean S.D. under each condition. The data were analyzed by ANOVA 

followed by Tukey’s test using GraphPad Prism 6 software (San Diego, CA, USA), and p < 

0.05 was considered statistically significant. 
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2.3. Results 

2.3.1. Establishment of an assay for autophagy-mediated cell survival 

As described in Chapter 1.3, 3-MA and CQ are known as autophagy inhibitors. 3-MA 

inhibits the early-stage of autophagy by suppressing autophagosome maturation [1]. On the 

other hand, CQ blocks the late-stage of autophagy by inhibiting proteolytic degradation [1]. To 

define the stages of autophagy inhibition that can be evaluated in this assay, we first examined 

the effects of 3-MA and CQ on each autophagy-related protein. The expression level of LC3-II 

generally correlates with the number of autophagosomes [11, 12]. Thus, we examined the effect 

of 3-MA and CQ on LC3-II levels in HepG2 cells. The cells were treated with 3-MA at 5 mM 

or CQ at 25 μM for various time periods, respectively. Protein levels were examined using 

western blotting. As shown in Fig. 2.1A, 3-MA showed a weak induction of LC3-II level. 

Conversely, CQ showed a clear increase of LC3-II level. 

To confirm that 3-MA and CQ are related to autophagy, it was necessary to determine the 

autophagic flux assessed by monitoring p62 levels. p62 directly interacts with LC3 on the 

isolated membrane, and subsequently p62 is incorporated into the autophagosome and then 

degraded [13, 14]. Previously, it was reported that the accumulation of p62 occurs when the 

late-stage of autophagy is inhibited [1, 6]. Therefore, we conducted a time-course experiment 

to determine the effect of 3-MA and CQ on p62 levels. As shown in Fig. 2.1B, 3-MA showed 

no apparent accumulation of p62, and conversely, CQ showed a clear accumulation of p62. 
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In previous studies, we reported that BBR (see page 9, Chapter 1, Fig. 1.3), an isoquinoline 

alkaloid contained in Coptis japonica and Phellodendron amurense, suppresses the 

proliferation of HL-60 cells [15]. It has been reported that BBR causes autophagic cell death 

by excessively inducing autophagy in HepG2 cells [3, 4]. Based on the above, we established 

an assay for analyses of autophagy and antiproliferation using BBR as an autophagy-inducing 

compound. First, we examined the effect of BBR on LC3-II level in HepG2 cells. The cells 

were treated with BBR at 10 and 50 μM for 24 h. As shown in Fig. 2.2A, BBR treatment 

remarkably increased LC3-II level at 50 μM. Next, to examine the optimum time for treatment, 

Figure 2.1. Effects of 3-MA and CQ on LC3-II and p62 expression levels. HepG2 

cells were treated with 3-MA (5 mM) or CQ (25 µM) for the times indicated. The 

expression levels of LC3B (A), p62 (B), and β-actin were determined by western 

blotting. Relative intensity of p62 is shown as a bar graph. The data shown are 

representative of three independent treatments using the same parameters with similar 

results. 
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the cells were treated with BBR at 50 μM for various time periods. As shown in Fig. 2.2B, BBR 

increased LC3-II level when the treatment time was more than 18 h; thus, we decided to treat 

the cells with each crude extract for 24 h to evaluate the expression level of LC3-II. 

 

 

 

 

 

It has been suggested that autophagy is intimately related to the proliferation of cancer 

cells [3-6, 16-20]; therefore, we next investigated the effects of BBR on the proliferation of 

HepG2 cells. The cells were treated with BBR at various concentrations for 24 or 48 h, and cell 

proliferations were determined using MTT assay. As shown in Fig. 2.3, significant decrease in 

the proliferation of HepG2 cells was observed in the presence of BBR. 

 

 

 

 

Figure 2.2. Effect of BBR on LC3-II expression levels. HepG2 cells were treated 

with 10 or 50 µM BBR for 24 h (A), and cells were treated with BBR (50 µM) for the 

times indicated (B). The expression levels of LC3B and β-actin were determined by 

western blotting. The data shown are representative of three independent treatments 

using the same parameters with similar results. 
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As with 3-MA and CQ, we conducted a time-course experiment to determine the effect of 

BBR on p62 level. Previously, it was reported that p62 is rapidly degraded by the 

autophagosome when autophagy is activated by starvation, and then recovers to basal levels 

after several hours in HepG2 cells [22]. As shown in Fig. 2.4, BBR temporarily decreased p62 

level upon a short period of incubation (approximately 4 h) and then the level recovered to basal 

level after 12 h. Therefore, the p62 levels with BBR treatment were consistent with the 

autophagy-inducing characteristics; these results agree with previous studies indicating that 

BBR induces autophagy.  

 

Figure 2.3. Effect of BBR on cell proliferation. HepG2 cells were treated with BBR 

at various concentrations for 48 h (A), and cells were treated with BBR (50 µM) for 

the times indicated (B) and cell proliferations were determined using MTT assay. ETP 

was used as a model for inducing apoptotic cell death against HepG2 cells [21]. The 

data are presented as the mean  S.D. of three individual experiments. ∗p < 0.05 

compared with the control group. 
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As described above, we decided to apply this assay established using 3-MA, CQ, and BBR 

to screen each crude extract for the investigation of autophagic activity. As shown in Table 2.2, 

this assay can divide crude extracts into autophagy inducers or late-stage inhibitors by the 

observation of LC3-II level. Subsequently, the results of p62 accumulation by extracts can 

determine autophagy inducers or late-stage inhibitors. 

 

  

Figure 2.4. Effect of BBR on p62 expression levels. HepG2 cells were treated with 

BBR (50 M) for the times indicated. The expression levels of p62 and β-actin were 

determined by western blotting. Relative intensity of p62 is shown as a bar graph. The 

data shown are representative of three independent treatments using the same 

parameters with similar results. 
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Table 2.2. Effects of each autophagy modulator on LC3-II and p62 expression levels. 

Modulation of autophagy Modulator LC3-II p62 

Inhibition 

Early-stage 3-MA   

Late-stage CQ   

Induction 

Starvation [22]   or  

BBR   or  
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2.3.2. Effects of 130 crude extracts on autophagosome formation 

We next investigated the effects of MeOH extracts prepared from the crude drugs on the 

levels of LC3-II in HepG2 cells. The cells were treated with 130 crude extracts at 20 μg/mL for 

24 h. LC3-II levels were examined using western blotting, and the band intensities were 

quantified and expressed as the fold changes relative to those in the control. BBR was used as 

a positive control (Fig. 2.2). As shown in Fig. 2.5A and B, among the 130 crude extracts, 24 

crude extracts, which are shown in black stars and columns, increased LC3-II levels, which 

suggests that they might exhibit modulation of autophagy. 

 

 

 

 

 

Figure 2.5. Cont. 
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Figure 2.5. Cont. 
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Figure 2.5. Cont. 
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Figure 2.5. Effects of 130 crude extracts on LC3-II expression levels. All raw data 

(A) and relative intensity of LC3-II expression levels by 130 crude extracts (B). 

Notable increases are shown by a black star (★) (A) and black column (B). HepG2 

cells were treated with 20 µg/mL of each crude extract for 24 h, and the expression 

levels of LC3B and β-actin were determined by western blotting. The data shown are 

representative of three independent treatments using the same parameters with similar 

results. Note: BBR, positive control (BBR 50 μM); 1–130, crude drug number (see 

Table 2.1). 
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2.3.3. Effects of 24 crude extracts on cell proliferation 

We further investigated the effects of the selected 24 crude extracts on the proliferation of 

HepG2 cells. The cells were treated with 5, 10, and 20 μg/mL of each of the 24 crude extracts 

for 24 h, and cell proliferation was measured using MTT assay. Table 2.3 indicates the 

percentage of cell proliferation after treatment with 5, 10, and 20 μg/mL of each extract. Among 

the 24 crude extracts, cell proliferation was significantly suppressed by >10% compared with 

that in the control using the following five crude extracts: 41 (Goboshi; burdock fruit), 75 

(Soboku; sappan wood), 118 (Mokko; saussurea root), 125 (Rengyo; forsythia fruit), and 130 

(Hikai; dioscorea). On the other hand, three extracts, namely, 102 (Hishinomi; water chestnut), 

106 (Biwayo; loquat leaf), and 107 (Binroji; areca), increased cell proliferation by >10% 

compared with that of the control. The remaining 16 crude extracts had no effect on cell 

proliferation. Fig. 2.6 shows the cell proliferation of only eight crude extracts (five extracts that 

suppressed cell proliferation and three extracts that increased it). These results suggest that these 

eight crude drugs might influence cell proliferation and autophagy. 
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Table 2.3. Effects of selected 24 crude extracts on cell proliferation. 

Drug 

No. 
Japanese Name English Name 

Concentration (µg/mL) 

5 10 20 

5 Uzu Aconite Root 100.4 100.3 103.3 

12 Onji Polygala Root 100.4 97.3 96.4 

17 Kakko Pogostemon Herb 96.6 100.2 100.5 

18 Kakkon Pueraria Root 101.6 107.4 109.5 

24 Kikyo Platycodon Root 103.6 106.9 106.8 

41b) Goboshi Burdock Fruit 89.5 82.9 76.7 

42 Gomishi Schisandra Fruit 105.5 107.3 106.2 

43 Saiko Bupleurum Root 100.8 100.3 96.1 

61 Jashoshi Cnidium Monnieri Fruit 96.1 96.1 92.6 

68 Shoma Cimicifuga Rhizome 100.2 104.3 106.3 

72 Sentai Cicada Slough 105.6 103.2 101.4 

75 b) Soboku Sappan Wood 100.8 94.0 86.9 

76 Soyo Perilla Herb 102.7 103.8 105.9 

82 Chimo Anemarrhena Rhizome 99.4 100.8 96.9 

102 a) Hishinomi Water Chestnut 105.1 108.1 116.3 

106 a) Biwayo Loquat Leaf 106.9 110.7 113.9 

107 a) Binroji Areca 105.1 114.6 108.7 

114 Mao Ephedra Herb 101.5 95.0 97.7 

118 b) Mokko Saussurea Root 94.2 82.3 67.3 

124 Ryokyo 
Alpinia Officinarum 

Rhizome 
101.4 103.2 109.5 

125 b) Rengyo Forsythia Fruit 90.4 89.5 88.7 

126 Renniku Nelumbo Seed 103.5 105.6 103.2 

127 Tanjin Salvia Miltiorrhiza Root 98.2 99.8 95.3 

130 b) Hikai Dioscorea 71.8 50.1 20.0 
a)Extracts that increased cell proliferation by >10% compared with the control. b)Extracts that 

suppressed cell proliferation by >10% compared with the control. 
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2.3.4. Effects of five crude extracts on autophagy flux 

Fig. 2.7 shows p62 levels upon treatment with five crude extracts suppressing cell 

proliferation. All of these crude extracts increased p62 levels. In particular, Hikai (130) strongly 

induced p62 level by more than fourfold after treatments for 12 and 24 h. Mokko (118) also 

induced p62 level by more than fourfold after treatment for 12 h. These results suggest that 

Goboshi (41), Soboku (75), Mokko (118), Rengyo (125), and Hikai (130) deregulate the 

autophagic pathway by blocking autophagic flux, which results in p62 accumulation. 

 

 

Figure 2.6. Effects of eight crude extracts on cell proliferation. HepG2 cells were 

treated with each crude extract at various concentrations for 24 h (A), and cells were 

treated with each crude extract (20 μg/mL) for the times indicated (B) and cell 

proliferations were determined using MTT assay. The data are presented as the mean 

± S.D. of three individual experiments. ∗p < 0.05 compared with the control group. 
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Figure 2.7. Effects of five crude extracts on p62 expression levels. HepG2 cells were 

treated with 20 µg/mL of each crude extract for different durations. The expression levels of 

p62 and β-actin were determined by western blotting. The data shown are representative of 

three independent treatments using the same parameters with similar results. 
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2.3.5. Effects of three crude extracts on autophagy flux 

Fig. 2.8 indicates p62 levels regulated by the three crude extracts that increased cell 

proliferation. Hishinomi (102) and Biwayo (106) had no effect on p62 levels during treatment. 

Binroji (107) decreased p62 level within a short time (approximately 4 h) after treatment and 

then p62 level recovered to basal level after 12 h. The results of these studies suggest that 

Hishinomi (102), Biwayo (106), and Binroji (107) did not block autophagic flux. Furthermore, 

Binroji (107) clearly induced autophagy.  

 

 

 

 

Figure 2.8. Effects of three crude extracts on p62 expression levels. HepG2 cells 

were treated with each crude extract at the indicated concentrations and for different 

durations. The expression levels of p62 and β-actin were determined by western 

blotting. The data shown are representative of three independent treatments using the 

same parameters with similar results. 
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2.4. Discussion 

As described in this chapter, we screened 130 extracts prepared from different crude drugs 

to identify those crude drugs that modulate HepG2 proliferation and autophagy. First, we 

screened 130 crude extracts to select those that increased LC3-II levels. Among them, 24 crude 

extracts did so, which suggests that these extracts might modulate autophagy. On the other hand, 

several crude extracts reduced LC3-II levels. These crude extracts may contain inhibitors of 

early-stage autophagy, but we did not focus on these crude extracts in this thesis. This is because 

these crude extracts are uncertain to contain autophagy inducers and inhibitors of late-stage that 

increased LC3-II levels. Therefore, we focused on crude extracts increasing LC3-II levels for 

effective search of autophagy modulators. 

Among the 24 crude extracts increased LC3-II levels, three extracts induced cell growth, 

but five extracts suppressed cell proliferation. Interestingly, the remaining 16 crude extracts had 

no effect on cell proliferation despite increasing LC3-II levels. These results suggest that the 

regulation of HepG2 proliferation is not indispensable for LC3-II induction. We determined 

that autophagic flux could be assessed by monitoring p62 levels because the results of screening 

for LC3-II levels cannot be directly applied to the selection of extracts that inhibit autophagy. 

Among the three crude extracts increased cell proliferation, Hishinomi (102) and Biwayo (106) 

had no effect on p62 levels. On the other hand, Binroji (107) decreased p62 level within a short 

duration after treatment, and then the level finally recovered to their basal level. It appears that 

Binroji (107) induced cell growth with inducing autophagy, and we expect that this crude drug 

might contain compounds that are specific inducers of autophagy. Although Hishinomi (102) 

and Biwayo (106) did not show obvious induction of autophagy, they showed that LC3-II levels 

can be increased without blocking autophagic flux. These results probably reflect that 

Hishinomi (102) and Biwayo (106) induced cell growth with inducing autophagy, but further 

investigations are needed to confirm these findings. In fact, Binroji (107) has been reported to 
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induce autophagy in several cell lines, such as leukemic Jurkat T cells [23] and oral carcinoma 

cells (OECM-1), Cal-27, and Scc-9 [24], by activating the AMPK/mTOR signaling pathway 

after the accumulation of reactive oxygen species [24]. However, the relationship between 

autophagy and Hishinomi (102) or Biwayo (106) has not been previously reported. 

On the other hand, five crude extracts suppressed cell proliferation and increased p62 

levels, which suggests that these extracts disturb the autophagic pathway by inhibiting 

autophagic flux, leading to p62 accumulation. Among these five extracts, Goboshi (41) and 

Rengyo (125) contain arctigenin belonging to lignans as the same major compound. It has been 

reported that arctigenin protects against drug-induced hepatitis by suppressing the immune 

system and modulating autophagy by inhibiting the IFN-γ/IL-6/Stat1 and IL-6/Bnip3 pathways 

in mice [25]. However, our results in this study indicate that Soboku (75) and Mokko (118) 

inhibited autophagy with p62 accumulation. Brazilin contained in Soboku (75) was reported to 

induce autophagic cell death by disturbing calcium homeostasis in osteosarcoma MG-63 cells, 

thereby suppressing cell proliferation [26]. Costunolide contained in Mokko (118) was reported 

to suppress the proliferation of multidrug-resistant human ovarian cancer OAW42-A cells by 

activating apoptotic and autophagic pathways via the decreased expression of Bcl-2 [27]. This 

implies that the differences in the reactivity and signaling pathways depend on the cell type. 

Our results and those of previous reports indicate that these extracts contain compounds that 

modulate autophagy. We conclude that the crude drugs selected for this study could serve as 

sources of lead compounds in the development of reagents for autophagy research and agents 

for cancer therapy. However, further studies are needed to isolate and identify the active 

compounds in the drugs. 
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2.5. Conclusion 

Among the 130 crude extracts, 24 increased LC3-II levels. Among these, Goboshi 

(burdock fruit), Soboku (sappan wood), Mokko (saussurea root), Rengyo (forsythia fruit), and 

Hikai (dioscorea) notably suppressed the proliferation of HepG2 cells and increased p62 levels, 

which suggested that these five extracts disturb autophagy, resulting in p62 accumulation. On 

the other hand, Hishinomi (water chestnut), Biwayo (loquat leaf), and Binroji (areca) induced 

cell growth and decreased or did not affect p62 levels, which implied that these three extracts 

might induce autophagy modulators for cell growth. The results suggest that the compounds, 

which are contained in the crude drugs selected for this study, could control cell proliferation 

with modulating autophagy in HepG2 cells. The isolation and identification of the active 

compounds in these drugs might lead to the development of reagents for autophagy research 

and agents for cancer therapy. 
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Chapter 3 

Suppression of autophagy by arctigenin contained in the fruits of 

Arctium lappa (Goboshi) and the fruits of Forsythia suspense 

(Rengyo) and the molecular mechanisms 

 

3.1. Introduction 

As described in Chapter 2, the screening data demonstrated that extracts of the fruits of 

Arctium lappa (hereafter, Goboshi) and the fruits of Forsythia suspensa (hereafter, Rengyo) 

have beneficial antiproliferative activity with inhibition of autophagy (Fig. 3.1 and 3.2) [1].  

 

 

 

 

Figure 3.1. The flower [2] and the fruits of Arctium lappa (Goboshi). 
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Goboshi has the following pharmacological activities: anti-inflammatory, antibacterial, 

antiviral, antioxidant, neuro-and hepatoprotective, antitumor, and antiaging [3, 4]. Rengyo has 

anti-inflammatory, antibacterial, antiviral, antioxidant, neuro- and hepato-protective, antitumor, 

and anti-atopic dermatitis effects [5, 6]. It is well known that the major compounds of both 

Goboshi and Rengyo are arctigenin (ARG) and arctiin (ARC) (Fig. 3.3) [7].  

 

 

 

 

 

Figure 3.2. The flower [2] and the fruits of Forsythia suspense (Rengyo). 

Figure 3.3. Chemical structures of ARG and ARC. 
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ARG and ARC are bioactive lignans with multiple pharmacological functions such as 

antitumor [8], antioxidant [9], anti-inflammatory [10], antiviral [11], and neuroprotective effects 

[12]. Recently, ARG was reported to induce autophagic cell death by inhibiting activation of 

the mTOR pathway in ER-positive human breast cancer cells [13]. However, it seems likely 

that ARG could modulate autophagy (induce or inhibit), but its mechanism of action in cancer 

cells is not fully understood.  

As described in this chapter, we first examined the effects of ARG and ARC on the 

proliferation of HepG2 cells. Next, we investigated the efficacy and molecular mechanism of 

action of ARG on the modulation of autophagy-related proteins in HepG2 and human breast 

cancer MCF-7 cells. Furthermore, we confirmed the suppressive effect of ARG on starvation-

induced autophagy. 
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3.2. Materials and methods 

3.2.1. Reagents 

ARG (purity > 95%) and ARC (purity > 97%) were purchased from Tokyo Chemical 

Industries (Tokyo, Japan). Antibodies against beclin 1, phospho-beclin 1 (Ser93) (p-beclin 1), 

caspase-3, and PARP were obtained from Cell Signaling Technology (Beverly, MA, USA). The 

anti-rabbit Alexa Fluor 488-conjugated antibody was purchased from Thermo Fisher Scientific 

(Rockford, IL, USA). The ProLong® Gold antifade reagent with 4',6-diamidino-2-phenylindole 

(DAPI) was obtained from Invitrogen (Carlsbad, CA, USA). Triton X-100 was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). All other reagents were the same as described in Chapter 

2.2.2. 

 

3.2.2. Cell culture and treatment 

HepG2 and MCF-7 cells were obtained from the RIKEN BioResource Center Cell Bank 

(Ibaraki, Japan). Both cells were grown in DMEM (regular medium). The cell culture and 

treatment were performed as explained in Chapter 2.2.3. To induce starvation, cells were 

washed with phosphate-buffered saline (PBS) and incubated in amino acid-free DMEM without 

FBS (starvation medium). 

 

3.2.3. Determination of cell proliferation 

See Chapter 2.2.5. After replacing the original medium with fresh regular medium, the 

cells were treated with various concentrations of ARG or ARC for 24 or 48 h. Determination 

of cell proliferation was performed same MTT assay protocol as described in Chapter 2.2.5. 

 

3.2.4. Western blot analysis 

See Chapter 2.2.4. 
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3.2.5. Fluorescence microscopy 

Cells (5 × 104 cells) were plated in two-chamber glass slides in 2 mL of regular medium. 

After replacing with starvation medium, the cells were incubated with ARG for 4 h. Then, the 

cells were fixed with 4% paraformaldehyde for 15 min and permeabilized with 0.3% (v/v) 

Triton X-100 in PBS for 10 min. After washing with PBS, the cells were blocked with PBS 

containing 0.3% (v/v) Triton X-100 and 1% (w/v) bovine serum albumin for 60 min and 

incubated with anti-LC3B antibody (1:200) for 1 h. After washing, the cells were incubated 

with secondary anti-rabbit Alexa Fluor 488-conjugated antibody (1:1000) for 30 min in the dark. 

Then, the slide was rinsed with PBS and mounted with ProLong® Gold antifade reagent with 

DAPI. The slides were observed using a confocal laser scanning microscope (FV10i; Olympus, 

Tokyo, Japan). 

 

3.2.6. Statistical analysis 

See Chapter 2.2.6. 
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3.3. Results 

3.3.1. Effects of ARG and ARC on cell proliferation 

First, we examined the effects of ARG and ARC on the proliferation of HepG2 cells. The 

cells were treated with ARG or ARC at several concentrations for 24 or 48 h, after which cell 

proliferation was determined using MTT assay. As shown in Fig. 3.4, ARG or ARC 

significantly suppressed cell proliferation. The antiproliferative effect of ARG was higher than 

that of ARC. 

 

 

 

 

 

 

Figure 3.4. Effects of ARG and ARC on cell proliferation. HepG2 cells were treated with 

ARG or ARC at various concentrations for 48 h (A), and cells were treated with ARG (10 

µM) or ARC (10 µM) for the times indicated (B) and cell proliferations were determined 

using MTT assay. ETP was used as a model for inducing apoptotic cell death against HepG2 

cells. The data are presented as the mean S.D. of three individual experiments. p < 0.05 

compared with the control group. 
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3.3.2. Effect of ARG on autophagy-related proteins 

Next, we determined the effect of ARG on the expression levels of autophagy-related 

proteins by western blotting. Beclin 1, which is also one of the most important proteins for 

autophagy, is directly phosphorylated by AMPK to induce autophagy [14]. Thus, an increase in 

the level of p-beclin 1 indicates induction of autophagy. As shown in Fig. 3.5, ARG slightly 

increased LC3-II level and enhanced the phosphorylation of beclin 1. 

 

 

 

 

 

 

 

 

Figure 3.5. Effect of ARG on autophagy-related proteins. HepG2 cells were treated with 

ARG at the indicated concentrations for 24 h. The expression levels of LC3B, beclin 1, p-

beclin 1, p62, and β-actin were determined by western blotting. The data shown are 

representative of three independent treatments using the same parameters with similar 

results. 
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To assess whether ARG induces or inhibits autophagy, we performed time-course 

experiments to determine the effect of ARG on p62 levels. As shown in Fig. 3.6, ARG clearly 

increased p62 level as time passes. To confirm the results obtained, we used a different cancer 

cell line, human breast cancer MCF-7 cells. As shown in Fig. 3.7, ARG suppressed cell 

proliferation and slightly increased LC3-II level and significantly increased p-beclin 1 and p62 

levels in MCF-7 cells. These results suggest that ARG might block the autophagic pathway, 

which leads to p62 accumulation. 

 

 

 

 

 

 

 

Figure 3.6. Effect of ARG on p62 expression levels. HepG2 cells were treated with 

ARG (10 M) for the times indicated. The expression levels of p62 and β-actin were 

determined by western blotting. Relative intensity of p62 is shown as a bar graph. 

The data shown are representative of three independent treatments using the same 

parameters with similar results. 
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As shown in Fig. 3.8, 3-MA slightly increased both LC3-II and p-beclin 1 levels, but not 

p62 accumulation. Moreover, CQ clearly increased both LC3-II and p62 levels, but not beclin 

1 phosphorylation. Taken together, our data imply that the stage of inhibition of autophagy by 

ARG differed from those by 3-MA or CQ. 

 

 

 

Figure 3.7. Effect of ARG on proliferation of MCF-7 cells and autophagy-related 

proteins. MCF-7 cells were treated with ARG at various concentrations for 24 or 48 h, and 

cell proliferations were determined using MTT assay (A). The data are presented as the mean 

 S.D. of three individual experiments. ∗p < 0.05 compared with the control group. MCF-7 

cells were treated with ARG at various concentrations for 24 h (B). The expression levels of 

LC3B, beclin 1, p-beclin 1, p62, and β-actin were determined by western blotting. The data 

shown are representative of three independent treatments using the same parameters with 

similar results. 
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Figure 3.8. Effects of 3-MA and CQ on autophagy-related proteins. HepG2 cells were 

treated with 3-MA and CQ at the indicated concentrations for 24 h. The expression levels of 

LC3B, beclin 1, p-beclin 1, p62, and β-actin were determined by western blotting. The data 

shown are representative of three independent treatments using the same parameters with 

similar results. 
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3.3.3. Effect of ARG on starvation-induced autophagy 

To confirm the autophagy inhibition by ARG, we further determined whether ARG could 

influence starvation-induced autophagy. First, we examined the levels of LC3-II in the absence 

or presence of ARG using HepG2 cells after 4 h of continuous starvation. As shown in Fig. 3.9, 

although starvation increased LC3-II level, ARG clearly reduced this induction.  

 

 

 

 

Figure 3.9. Effect of ARG on starvation-induced LC3-II expression levels. HepG2 cells 

were treated with or without ARG (10 M) under conditions of regular medium or starvation 

medium for 4 h. The expression levels of LC3B and β-actin were determined by western 

blotting. Relative intensity of LC3-II is shown as a bar graph. The data shown are 

representative of three independent treatments using the same parameters with similar 

results. 
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Next, we observed autophagosome/autolysosome formation using a confocal laser 

scanning microscope. We detected autophagosomes/autolysosomes using anti-LC3B primary 

antibody and anti-rabbit Alexa Fluor 488-conjugated secondary antibody (green). As shown in 

Fig. 3.10, starvation treatment formed autophagosomes/autolysosomes, but ARG clearly 

suppressed this formation. These results demonstrated that ARG could inhibit starvation-

induced autophagy. 

 

 

 

 

Figure 3.10. Effect of ARG on increased autophagosome/autolysosome formation by 

starvation. Detection of LC3B-positive organelles (autophagosomes/autolysosomes). 

HepG2 ells were treated with or without ARG (10 M) under conditions of regular medium 

or starvation medium for 4 h. After incubation, cells were fixed, permeabilized, and treated 

with anti-LC3B antibody followed by treatment with Alexa Fluor 488-conjugated secondary 

antibody. The images were made at ×250 magnification. 
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3.3.4. Effect of ARG on apoptosis-related proteins 

Caspase-3 activation and PARP cleavage are hallmarks of apoptosis [15-17]. To determine 

the involvement of ARG in apoptosis, we examined the effect of ARG on caspase-3 and PARP. 

ETP was used as a positive control [15, 18]. Although ETP induced caspase-3 activation and 

PARP cleavage, ARG did not affect either of these proteins, even at 100 M, which is ten times 

the concentration that modulates LC3-II and p-beclin 1 (Fig. 3.11). These results imply that the 

antiproliferative effect of ARG may occur independently of the caspase-3 mediated apoptosis. 

 

 

 

 

 

 

Figure 3.11. Effect of ARG on the activation of caspase-3 and PARP cleavage. HepG2 

cells were treated with ARG or ETP at the indicated concentrations for 24 h. The expression 

levels of caspase-3, PARP, and β-actin were determined by western blotting. ETP was used 

as a positive control. The data shown are representative of three independent treatments 

using the same parameters with similar results. 
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3.4. Discussion 

As described in this chapter, we found that ARG and ARC significantly suppressed the 

proliferation of HepG2 cells, and the antiproliferative effect of ARG was higher than that of 

ARC. Molecular analysis showed that ARG slightly increased LC3-II level and strongly 

induced beclin 1 phosphorylation and p62 level. In addition, we also observed similar patterns 

for beclin 1 phosphorylation and p62 level in human breast cancer MCF-7 cells. These results 

suggest that ARG might block the autophagic pathway, which leads to p62 accumulation. 

Starvation is the most potent known physiological inducer of autophagy, and it has been 

commonly used to study the molecular mechanism of autophagy [19]. Hence, we further 

verified the inhibitory effect of ARG on starvation-induced autophagy. Our data indicated that 

the expression of LC3-II was induced by starvation medium, but ARG clearly reduced this 

induction. Moreover, the data using confocal laser scanning microscopy demonstrated that 

autophagosomes/autolysosomes formed by starvation were decreased by ARG. These data 

suggest the autophagy inhibition by ARG. 

Several autophagy inhibitors have been developed to analyze the mechanism of autophagy 

and enhance the therapeutic effects of anticancer drugs. 3-MA and CQ are well-known 

autophagy inhibitors. 3-MA is one of the most commonly used inhibitors to suppress autophagy 

at an early-stage. It is reported that 3-MA acts as a PI3K inhibitor that suppresses class III PI3K 

activity required for autophagosome maturation [19]. Thus, 3-MA inhibits autophagy without 

affecting LC3-II and p62 levels [19]. Indeed, our data showed that 3-MA induced beclin 1 

phosphorylation, but not LC3-II and p62 levels. In contrast, CQ is known as an inhibitor to 

block autophagy at a late-stage [19]. CQ inhibits acidification inside the lysosome and disturbs 

autophagosome–lysosome fusion [19]. We demonstrated that CQ clearly increased the levels 

of both LC3-II and p62. Interestingly, ARG slightly increased LC3-II level and strongly induced 

beclin 1 phosphorylation and p62 level. 3-MA slightly increased LC3-II level. Both ARG and 
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3-MA lack significant induction of LC3-II, indicating a low number of autophagosomes. This 

suggested that ARG suppresses the stage prior to autophagosome maturation, similar to 3-MA. 

Furthermore, although p62 accumulation was not observed in 3-MA, ARG significantly 

induced p62 accumulation like CQ. These findings imply that the stage of inhibition in 

autophagy by ARG differed from those by 3-MA and CQ (Fig. 3.12). 

 

 

 

 

 

Apoptosis is one of the main factors reducing cell proliferation. Numerous studies have 

reported many kinds of natural products that trigger apoptosis in various cancer cell lines [16. 

17]. In recent years, it has been reported that several natural products induce autophagy in 

parallel with inducing apoptosis. For example, toxicarioside O derived from Antiaris toxicaria 

was found to induce both apoptosis and autophagy in the colorectal cancer cell lines HCT116 

and SW480 [20]. BBR also induces both apoptosis and autophagy in human glioma cell lines 

[21] and HepG2 cells [22]. In addition, sodium cantharidinate derived from Chinese blister 

Figure 3.12. Proposed mechanism of inhibition of autophagy by ARG, 3-MA, and CQ. 

The autophagy inhibition mechanism of ARG shown is guess based on this study. Further 

investigation is needed to clarify the mechanism of ARG. 
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beetle induces both apoptosis and autophagy in HepG2 cells [23]. Moreover, durmillone, a 

flavonoid in Millettia pachyloba, also activates both in human cervix adenocarcinoma HeLa 

cells and the breast cancer cell line MCF-7 [24]. However, there are few reports regarding 

natural products that specifically modulate only autophagy without affecting apoptosis. Here, 

our data demonstrated that treatment with ARG even at 100 M, which is ten times the 

concentration that modulates autophagy, did not activate caspase-3 and cleave of PARP. These 

results imply that the antiproliferative activity of ARG may occur independently of caspase-3 

mediated apoptosis. 
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3.5. Conclusion 

In this chapter, we explored the effect of ARG, a bioactive lignan from both Goboshi and 

Rengyo, on cell proliferation and autophagy-related proteins in HepG2 cells. ARG suppressed 

the proliferation of HepG2 cells. Analysis of autophagy-related proteins using HepG2 and 

MCF-7 cells demonstrated that ARG might block the autophagy that leads to p62 accumulation. 

The stages of inhibition in autophagy by ARG differed from those by the autophagy inhibitors 

3-MA or CQ. ARG could also inhibit starvation-induced autophagy. Further analysis of 

apoptosis-related proteins indicated that ARG did not affect caspase-3 activation and PARP 

cleavage, suggesting that the antiproliferative activity of ARG can occur independently of 

caspase-3 mediated apoptosis. In summary, we conclude that ARG suppresses cell proliferation 

and autophagy in HepG2 cells. 
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Chapter 4 

Isolation of active compounds derived from the rhizome of 

Dioscorea tokoro (Hikai) that inhibit autophagy 

 

4.1. Introduction 

As described in Chapter 2, the screening data demonstrated that the extract of the rhizome 

of Dioscorea tokoro (hereafter, Hikai) (Fig. 4.1) exerted the strongest suppression on cell 

proliferation. 

 

 

 

 

Hikai, which is thought to have an effect on improving the circulation of water in the body 

(利水作用), has an anti-inflammatory effect, and is mainly used for treating dysuria, joint pain, 

and skin eczema, although it is rarely used. Hikai is a wild yam and its rhizomes are not 

generally used in the diet. However, in especially the north of Japan such as Iwate and Aomori 

prefectures, they are believed to be effective in recovering from fatigue and have been used to 

support health [2]. From chemical analyses, it has been reported that Hikai contains steroidal 

Figure 4.1. The flower [1] and the rhizome of Dioscorea tokoro (Hikai). 
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saponins such as dioscin and protodioscin [3, 4]. A report from pharmacological studies 

provided evidence that the MeOH extract of Hikai have a potential of treating rheumatoid 

arthritis [4]. However, data on the pharmacological activities of Hikai and its active compounds 

are very limited. 

As described in this chapter, we focused on the isolation of active compounds in Hikai 

exerting antiproliferative and inhibition of autophagy. First, we compared the activities of the 

fractions prepared from the MeOH extract of Hikai. The bioassay-guided fractionations of 

active fractions led to the isolation of several active compounds. Finally, we investigated the 

effects of isolated compounds on cell proliferation to explore the structure–activity relationship 

and confirmed the inhibition of autophagy. 
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4.2. Materials and methods 

4.2.1. General procedures 

Specific rotations were measured with a DIP-360 digital polarimeter (JASCO, Easton, PA, 

USA). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECX 400 FT-

NMR spectrometer (JEOL, Tokyo, Japan) at room temperature. Electrospray ionization time-

of-flight mass spectrometer (ESI-TOF-MS) experiments employed a Waters Xevo G2-XS Q-

TOF mass spectrometer (Waters, Milford, MA, USA). Column chromatography was performed 

on Silica Gel 60 (Nacalai Tesque., Kyoto, Japan, 230-400 mesh) and YMC ODS-A gel (YMC 

Co. Ltd., Kyoto, Japan, 50 µm,). Thin-layer chromatography (TLC) was performed on TLC 

Silica gel 60F254 (Merck, Damstadt, Germany) and TLC Silica gel 60 RP-18 F254S (Merck, 

Damstadt, Germany) plates. Spots were visualized by spraying with 10% aq. sulfuric acid, 

followed by heating. HPLC (high performance liquid chromatography) was performed on UV-

8020 UV-VIS detector (Tosoh Corp., Tokyo, Japan), DP-8020 pump (Tosoh Corp., Tokyo, 

Japan) and DP-8020 degasser (Tosoh Corp., Tokyo, Japan). XBridge BEH C18 Column (Waters, 

Milford, MA, USA, 130Å, 3.5 µm, 10 mm × 250 mm) were used for preparative purposes. 

 

4.2.2. Extraction and isolation 

Hikai (2.5 kg) was extracted three times with MeOH under reflux for 12 h. Evaporation of 

the solvent under reduced pressure provided a MeOH extract (338.77 g). A part of the MeOH 

extract (333.77 g) was partitioned into hexane–water (H2O) (1:1, v/v) mixture to furnish a 

hexane-soluble fraction (0.45 g) and an aqueous phase. The aqueous phase was further 

partitioned into ethyl acetate (EtOAc)–H2O (1:1, v/v) mixture to furnish an EtOAc-soluble 

fraction (19.23 g) and an aqueous phase. The aqueous phase was further extracted with n-

butanol (BuOH) to give an n-BuOH-soluble fraction (138.24 g) and an H2O-soluble fraction 

(124.17 g). A part of the n-BuOH-soluble fraction (21.15 g) was subjected to normal phase 
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silica gel column chromatography [580 g, chloroform–MeOH–H2O (20:3:1 → 15:3:1 → 

10:3:1 → 7:3:1 → 6:4:1, v/v/v, lower layer) → MeOH] to give 12 fractions [Fr. B1 (143.2 

mg), Fr. B2 (185.2 mg), Fr. B3 (437.6 mg), Fr. B4 (191.5 mg), Fr. B5 (266.9 mg), Fr. B6 (537.3 

mg), Fr. B7 (971.1 mg), Fr. B8 (5.14 g), Fr. B9 (2.07 g), Fr. B10 (2.67 g), Fr. B11 (6.24 g), Fr. 

B12 (1.39 g)]. Fraction B8 (5.14 g) was subjected to reversed –phase silica gel column 

chromatography [305 g, MeOH: H2O (7:3 →  8:2 →  9:1, v/v) →  MeOH] to give 14 

fractions [Fr. B8–1 (111.5 mg), Fr. B8–2 (32.6 mg), Fr. B8–3 (12.3 mg), Fr. B8–4 (17.4 mg) , 

Fr. B8–5 (18.7 mg), Fr. B8–6 (11.5 mg), Fr. B8–7 (152.1 mg), Fr. B8–8 (3.72 g) , Fr. B8–9 

(632.2 mg), Fr. B8–10 (15.7 mg), Fr. B8–11 (5.6 mg), Fr. B8–12 (5.2 g), Fr. B8–13 (14.9 mg), 

Fr. B8–14 (48.5 mg)]. Fraction B11 (6.24 g) was subjected to reversed–phase silica gel column 

chromatography [330 g, MeOH: H2O (5:5 → 6:4 → 7:3 → 8:2 →, v/v) → MeOH] to 

give 14 fractions [Fr. B11–1 (1.50 g), Fr. B11–2 (50.3 mg), Fr. B11–3 (46.9 mg), Fr. B11–4 

(54.8 mg) , Fr. B11–5 (221.4 mg), Fr. B11–6 (757.6 mg), Fr. B11–7 (1.10 g), Fr. B11–8 (1.51 

g), Fr. B11–9 (485.8 mg), Fr. B11–10 (201.7 mg), Fr. B11–11 (203.6 mg), Fr. B11–12 (139.3 

mg), Fr. B11–13 (30.5 mg), Fr. B11–14 (44.8 mg)]. A part of the Fr. B8–8 (200.0 mg) was 

purified by HPLC [acetonitrile: H2O: acetic acid (88:12:0.3), XBridge BEH C18] to give 1 

(63.9 mg, purity > 92%) and 2 (34.2 mg, purity > 90%). A part of the Fr. B11–8 (1.51 g) was 

purified by HPLC [acetonitrile: H2O: acetic acid (88:12:0.3), XBridge BEH C18] to give 3 

(29.4 mg, purity > 95%). The known compounds were identified by comparison of their 

physical data ([]D, 1H-NMR, 13C-NMR, and MS) with reported values. 

 

4.2.3. Acid hydrolyses 

Compounds 1 and 2 (10.1 and 10.4 mg) were dissolved in 5 mL of 3 mol/L sulfuric acid 

and each solution was heated at 90 °C for 6 h. After neutralizing with sodium hydroxide, each 

hydrolysate was extracted 5 mL of ethyl acetate. Evaporation of the solvent under reduced 
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pressure yielded 4 (5.6 mg from 1, purity > 95%) and 5 (6.0 mg from 2, purity > 81%). Each 

compound was identified by comparison of their physical data ([]D, 1H-NMR, 13C-NMR, and 

MS) with reported values.  

 

4.2.4. Materials for biological assays 

All materials using for biological assays were the same as described in Chapter 3.2.1. 

 

4.2.5. Cell culture and treatment 

See Chapter 2.2.3.  

 

4.2.6. Determination of cell proliferation 

The cell culture was performed as explained in Chapter 2.2.5. After replacing with fresh 

medium, the cells were treated with various concentrations of each fraction or each compound 

for 24 h. Determination of cell proliferation was performed same MTT assay protocol as 

described in Chapter 2.2.5. 

 

4.2.7. Western blot analysis 

Cells (1 × 106 cells/dish) were plated on 6 cm dishes. After replacing with fresh medium, 

the cells were treated with n-BuOH fraction or each compound for various time periods. All 

subsequent steps were performed same western blot analysis protocol as described in Chapter 

2.2.4. 

 

4.2.8. Statistical analysis 

See Chapter 2.2.6. 
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4.3. Results 

4.3.1. Comparison of antiproliferative effects of each fraction 

To identify the bioactive compounds responsible for the antiproliferative effect, the crude 

extract was suspended in water and successively partitioned using hexane, EtOAc, and n-BuOH. 

The cells were treated with 5, 10, and 20 μg/mL of each fraction for 24 h, and cell proliferation 

was measured using MTT assay. As shown in Fig. 4.2A, both n-BuOH and H2O fractions 

significantly suppressed cell proliferation compared with hexane and EtOAc fractions. To 

further determine which fraction exerts stronger effects, the cells were treated at much lower 

concentrations than 5 μg/mL of the n-BuOH and H2O fractions for 24 h (Fig. 4.2C). The results 

showed that the suppression of the n-BuOH fraction was stronger than that of the H2O fraction. 
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Figure 4.2. Effects of fractions prepared from Hikai extract on cell proliferation. 

HepG2 cells were treated with each fraction prepared from the crude extract of Hikai at 

various concentrations (A: 5–20 μg/mL, C: 0.313–5 μg/mL) for 24 h, and cells were treated 

with each fraction (B: 20 μg/mL, D: 0.625 μg/mL) for the times indicated and cell 

proliferations were determined using MTT assay. The data are represented as the mean 

S.D. of three individual experiments. ∗p < 0.05 compared with the control group. 
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4.3.2. Effect of n-BuOH fraction on autophagosome formation and autophagy flux 

To confirm the effect of n-BuOH fraction on autophagy, we observed the expression levels 

of both LC3-II and p62. The cells were treated with the n-BuOH fraction at 0.313 μg/mL for 

various time periods, and the levels of each protein were examined using western blotting. As 

shown in Fig. 4.3, treatment of the n-BuOH fraction clearly increased the levels of both LC3-

II and p62. These results suggest that the n-BuOH fraction might inhibits autophagy by blocking 

autophagic flux, which results in p62 and LC3-II accumulation. 

 

 

 

 

 

 

 

 

Figure 4.3. Effect of n-BuOH fraction on LC3-II and p62 expression levels. HepG2 cells 

were treated with n-BuOH fraction prepared from the crude extract of Hikai at 0.313 μg/mL 

for the times indicated. The expression levels of LC3B, p62, and β-actin were determined 

by western blotting. The data shown are representative of three independent treatments using 

the same parameters with similar results. 
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4.3.3. Isolation, acid hydrolyses, and structural identification of 1–5 

Since the n-BuOH fraction reduced cell proliferation most strongly and inhibited 

autophagy, we performed the isolation of bioactive compounds from the n-BuOH fraction. 

Further bioassay-guided separation using solvent partition, fractionation, and combined 

chromatography techniques was performed, and then we achieved the isolation of three 

compounds from the n-BuOH fraction. We isolated two spirostan-type steroidal saponins, 

dioscin (1) [5, 6], and yamogenin 3-O--L-rhamnopyranosyl(1→4)-O--L-rhamnopyranosyl 

(1→2)--D-glucopyranoside (2) [5, 7, 8], and a frostane-type steroidal saponins, protodioscin 

(3) [5, 9]. The structures were identified by physicochemical date including NMR and MS data, 

together with comparison those in the literature. In addition, 1 and 2 were acid-hydrolyzed to 

obtain each aglycone, diosgenin (4) [5, 10] and yamogenin (5) [5, 11]. The chemical structures 

of 1–5 are shown in Fig. 4.4. Among them, 1 and 3 are steroidal saponins that were well known 

as the main compounds from Hikai extract [3, 4, 12]. 
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4.3.4. Effects of 1–5 on cell proliferation, and its structure–activity relationships 

To investigate the effects of 1–5 on the proliferation of HepG2 cells, we treated the cells 

using 6.25, 12.5, 25, 50, and 100 μM of 1–5 for 24 h, followed by the MTT assay. When we 

compared the antiproliferative effect of each compound, all compounds reduced cell 

proliferation and the potency was in the following order: 1 > 2 > 3 > 4 > 5 (Fig. 4.5). 

The effects of 1 and 4 with a 25(R)-conformation were stronger than those of 2 and 5 with 

a 25(S)-conformation. These results indicated that the efficacy due to the 25(R)-conformation 

is maintained with or without the sugar moiety. Next, the effects of 1, 2, and 3 containing a 

sugar moiety were found to be stronger than those of 4 and 5 lacking one. In addition, 1 and 2, 

which possess a spirostan-type aglycone moiety, showed stronger effects than 3, which 

possesses a furostan-type aglycone moiety. From these results of structure–activity 

relationships, it was found that the 25(R)-conformation, structures containing a sugar moiety, 

and spirostan-type aglycone moiety might be important for antiproliferative effect. 

Figure 4.4. Chemical structures of 1–5 from n-BuOH fraction. 
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4.3.5. Effects of 1–5 on autophagosome formation and autophagy flux 

To determine whether 1–5 inhibit autophagy, we investigated their effects on the levels of 

both LC3-II and p62 in HepG2 cells. The cells were treated with 1 and 2 at 10 μM, 3 and 5 at 

50 μM, and 4 at 20 μM for various time periods. As shown in Fig. 4.6, the treatment with 1, 2, 

and 3 clearly increased the levels of both LC3-II and p62. These results suggest that 1, 2, and 3 

deregulate the autophagic pathway by blocking autophagic flux, which results in p62 and LC3-

II accumulation. On the other hand, the treatments with 4 and 5 did not show a clear increase 

in the levels of both LC3-II and p62. These results suggest that 4 and 5 do not affect autophagy. 

 

Figure 4.5. Effects of 1–5 on cell proliferation. HepG2 cells were treated with 1–5 at 

various concentrations for 24 h (A), and cells were treated with 1–5 (100 µM) for the times 

indicated (B), and cell proliferations were determined using MTT assay. ETP was used as a 

model for inducing apoptotic cell death against HepG2 cells. The data are presented as the 

mean  S.D. of three individual experiments. p < 0.05 compared with the control group. 
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Figure 4.6. Effects of 1–5 on LC3-II and p62 expression levels. HepG2 cells were treated 

with the indicated concentrations of 1–5 for 24 h (A), or different durations (B). The 

expression levels of LC3B (A), p62 (B), and β-actin were determined by western blotting. 

BBR (50 M) is a positive control. The data shown are representative of three independent 

treatments using the same parameters with similar results. 

(A) 

(B) 
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4.3.6. Effects of 1–3 on apoptosis-related proteins 

To determine whether the effects of 1, 2, and 3 regarding high antiproliferative effect are 

associated with apoptosis induction, we examined the effects of 1, 2, and 3 on caspase-3 and 

PARP. ETP was used as a positive control [13, 14]. As shown in Fig. 4.7, the treatments with 1 

and 2 at 10 μM, and 3 at 50 μM for 12 and 24 h did not induce the activation of caspase-3 and 

cleaved PARP, at all concentrations. These results suggest that the treatments with 1, 2, and 3 

did not induce caspase-3 mediated apoptosis in HepG2 cells. 

 

 

 

  

Figure 4.7. Effects of 1–3 on the activation of caspase-3 and PARP cleavage. HepG2 

cells were treated with the indicated concentrations of 1–3 for 12 or 24 h, respectively. The 

expression levels of caspase-3, PARP, and β-actin were determined by western blotting. ETP 

(100 M, 12 h) was used as a positive control. The data shown are representative of three 

independent treatments using the same parameters with similar results. 
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4.4. Discussion 

As described in this chapter, we aimed to isolate active compounds from Hikai or Hikai 

extract having antiproliferative activity and inhibition of autophagy. Among four fractions 

prepared by MeOH extract of Hikai, the medium-polar (n-BuOH) fraction exhibited stronger 

antiproliferative effect than the other three fractions (Fig. 4.2). In addition, the n-BuOH fraction 

increased the levels of both LC3-II and p62, leading to the inhibition of autophagy (Fig. 4.3). 

The bioassay-guided fractionations of active fractions led to the isolation of five compounds 

(1–5). Among these, 1 and 3 are well known as the main compounds of Hikai extract [3, 4]. 

Compounds 1–3 are steroidal saponins and 4 and 5 are produced by the acid hydrolysis of 1 

and 2 (Fig. 4.4). According to the results of cell proliferation analysis in HepG2 cells, 1–5 

exerted antiproliferative activity (Fig. 4.5). Moreover, structure–activity relationship analysis 

suggested that the 25(R)-conformation, structures containing a sugar moiety, and spirostan-type 

aglycone moiety might be important for antiproliferative activity. To confirm that 1–5 inhibit 

autophagy in HepG2 cells, the autophagic flux was assessed by monitoring p62 levels upon 

treatments with 1–5 for different times. Treatments with 1–3 deregulated the autophagic 

pathway by blocking autophagic flux, which resulted in p62 accumulation (Fig. 4.6). Similarly, 

the levels of LC3-II was increased upon treatment with 1–3, but not upon that with 4 and 5. 

These results suggested the importance of structures containing a sugar moiety in modulating 

autophagy with LC3-II and p62 accumulation. 

Although 1–3 exerted inhibitory activity on autophagy, these compounds did not show the 

activation of caspase-3 and the cleavage of PARP, which are characteristics of apoptosis 

induction (Fig. 4.7). These results suggest that the antiproliferative activity of 1–3 might be 

modulated by the inhibition of autophagy, but not the induction of caspase-3 mediated apoptosis. 
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4.5. Conclusion 

In this chapter, we found that the medium-polar (n-BuOH) to high-polar (H2O) fractions 

of Hikai exerted strong antiproliferative activity and inhibition of autophagy on HepG2 cells. 

Phytochemical investigations of the n-BuOH fraction achieved the isolation of steroidal 

saponins, dioscin (1), yamogenin 3-O--L-rhamnopyranosyl(1→4)-O--L-rhamno- pyranosyl 

(1→2)--D-glucopyranoside (2), and protodioscin (3). In addition, acid hydrolysis of 1 and 2 

produced each aglycone, diosgenin (4) and yamogenin (5), respectively. Structure-activity 

relationship analysis implied that a 25(R)-conformation, structures containing a sugar moiety, 

and spirostan-type aglycone moiety are important for antiproliferative activity. Analysis of 

autophagy-related proteins using HepG2 cells demonstrated that 1–3 might inhibit autophagy, 

leading to p62 accumulation.  

On the other hand, 1–3 did not affect caspase-3 activation and PARP cleavage, suggesting 

that the antiproliferative activity of 1–3 can occur independently of caspase-3 mediated 

apoptosis. Taking these findings together, we conclude that 1–3, active compounds in Hikai 

extract, suppresses cell proliferation and inhibited autophagy. 
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Chapter 5 

Inhibition of autophagy by major active compounds contained in 

the root of Saussurea lappa (Mokko) 

 

5.1. Introduction 

As described in Chapter 2, the screening data demonstrated that extract of the root of 

Saussurea lappa (hereafter, Mokko) (Fig. 5.1) exerted the second strongest suppression on cell 

proliferation.  

 

 

 

 

Mokko has been traditionally used in the alleviation of pain during abdominal distention 

and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting because it provides 

warming effects in the gastrointestinal tract [13]. Furthermore, in Japan, Korea, and China, 

Mokko extract is used for the management of asthma [4], inflammatory diseases [5, 6], and 

ulcers [7]. Previous studies have demonstrated that the extract of Mokko possesses anticancer 

activity on several cancer cell lines by inducing apoptosis in the AGS gastric cancer cells, 

Figure 5.1. The flower [1] and the root of Saussurea lappa (Mokko). 
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human prostate carcinoma LNCaP cells, KB human oral cancer cells, and androgen-insensitive 

human prostate cells [811]. As an attractive side, the Japanese name Mokko refers to “wood 

fragrance,” and Mokko has a reputation for its fragrance and use in perfumery, and Mokko 

extract is also used as aromatic stomachic medicine. 

Mokko contains up to 3% essential oil including principal sesquiterpene lactones, such as 

costunolide (CL) and dehydrocostuslactone (DCL) (Fig. 5.2) [2].  

 

 

 

 

Several of sesquiterpene lactones, including CL and DCL, were shown to possess various 

biological and pharmacological activities such as anti-inflammatory [12], antiulcer [4, 7], 

antiviral, and hepatoprotective effects [13]. Among them, CL and DCL are well known to 

possess anticancer effects. CL and DCL have been reported to induce apoptosis in the cell lines 

of prostate cancer [9, 11], oral cancer [10], lung cancer [14], breast cancer [15], hepatocellular 

carcinoma [16], colon cancer [17], neuroblastoma [18], and leukemia [19]. Although various 

beneficial pharmacological activities of CL and DCL have been clarified, the effects of CL and 

DCL on autophagy are still unclear.  

As described in this chapter, we aimed to determine the high antiproliferative activity and 

Figure 5.2. Chemical structures of CL and DCL. 

81



 

Chapter Five 

the inhibition of autophagy exerted by the active compounds contained in Mokko on the HepG2 

cells. First, we compared the activities of the fractions prepared from the MeOH extract of 

Mokko. TLC and HPLC analyses of active fractions led to the confirming of CL and DCL 

containing. Finally, we investigated the effects of CL and DCL on cell proliferation and 

confirmed the inhibition of autophagy. 
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5.2. Materials and methods 

5.2.1. General procedures 

TLC was performed to same methods as described in Chapter 4.2.1. 

 

5.2.2. Extraction 

The roots of Saussurea lappa (3.0 kg) were extracted three times with MeOH under reflux 

for 12 h. Evaporation of the solvent under reduced pressure provided a MeOH extract (689.77 

g). A part of the MeOH extract (684.35 g) was partitioned same extraction protocol as described 

in Chapter 4.2.2. The following each soluble fractions were obtained: hexane (92.87 g), EtOAc 

(57.39 g), n-BuOH (72.06 g), and H2O (450.33 g). 

 

5.2.3. Preparation of sample solution 

For each sample, 5.0 mg of each sample (MeOH extract, hexane fraction, EtOAc fraction, 

BuOH fraction, and H2O fraction) was suspended in 1 mL of MeOH. The working solution at 

concentrations of 5.0 mg/mL (MeOH extract, BuOH fraction, and H2O fraction) and 0.5 mg/mL 

(hexane fraction, and EtOAc fraction) were used to determine the content of CL and DCL. Each 

supernatant was then filtered (Millex-LG 0.20 µm, 4 mm, Merck Ltd., MA, USA), and a 10 µL 

aliquot of each filtrate was analyzed by HPLC. 

 

5.2.4. Preparation of standard solution 

A stock standard solution was prepared by placing CL and DCL (each 1.00 mg) adding 1 

mL of MeOH. The solution contained CL and DCL at concentrations of each 1.00 mg/mL. The 

working solutions were used to construct calibration curves. (CL and DCL: 500 µg/mL, 100 

µg/mL, 50 µg/mL, 10 µg/mL, 5 µg/mL). Calibration curves were made by injecting a 10 µL 

aliquot of each working solution into the HPLC system.  
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5.2.5. HPLC instruments and conditions for CL and DCL 

The HPLC system was performed on a JASCO LC-2000 Plus series (JASCO, Tokyo, 

Japan) equipped with an intelligent UV-VIS detector (UV-2075 Plus), a quaternary gradient 

pump (PV-2089 Plus), an intelligent column oven (CO-2065 Plus), an intelligent autosampler 

(AS-2057 Plus), an interface (LC-Net II/ADC), and a data software (Chrom NAV). TSKgel 

ODS-100V column (4.6 × 250 mm, particle size 5 µm, Tosoh Corp. Tokyo, Japan) was used 

for the HPLC analysis at 40 ◦C with mobile phases acetonitrile and 0.1% aq. formic acid eluted 

according to the following gradient program: 0 min (40:60, v/v) → 20 min (100:0, v/v) → 30 

min (50:50, v/v, hold). The flow rate was 1 mL/min, the injection volume was 10.0 µL, and the 

detection wavelength was 225 nm. Peaks for CL and DCL were observed at 15.0 min, and 15.5 

min, respectively. 

 

5.2.6. Calibration 

Calibration curves were constructed with five standards prepared over the following 

concentration ranges: 5–500 µg/ml. Calibration curves were constructed by plotting 

concentration (µg/mL) on the horizontal axis and peak area (µV*sec) on the vertical axis. 

Linearity was determined using the correlation coefficient (r2). 

 

5.2.7. Materials for biological assays 

CL (purity > 95%) and DCL (purity > 98%) were purchased from Tokyo Chemical 

Industries (Tokyo, Japan). All other materials for biological assays using were the same as 

described in Chapter 3.2.1. 
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5.2.8. Cell culture and treatment 

See Chapter 2.2.3.  

 

5.2.9. Determination of cell proliferation 

See Chapter 4.2.6.  

 

5.2.10. Western blot analysis 

Cells (1 × 106 cells/dish) were plated on 6 cm dishes. After replacing with fresh medium, 

the cells were treated with hexane fraction or each compound for various time periods. All 

subsequent steps were performed same western blot analysis protocol as described in Chapter 

2.2.4. 

 

5.2.11. Statistical analysis 

See Chapter 2.2.6.  
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5.3. Results 

5.3.1. Comparison of antiproliferative effects of each fraction 

To identify the active compounds responsible for the antiproliferative effect, the crude 

extract was suspended in water and successively partitioned with the use of hexane, EtOAc, 

and n-BuOH. The cells were treated with 2.5, 5, 10, and 20 μg/mL of each fraction for 24 h, 

and cell proliferation was measured using MTT assay. As shown in Fig. 5.3, the hexane fraction 

most strongly suppressed the cell proliferation than the EtOAc, n-BuOH, and H2O fractions. 

 

 

 

 

 

Figure 5.3. Effects of fractions prepared from Mokko extract on cell proliferation. 

HepG2 cells were treated with each fraction prepared from the crude extract of Mokko at 

various concentrations for 24 h (A), and cells were treated with each fraction (B: 20 μg/mL) 

for the times indicated and cell proliferations were determined using MTT assay. The data 

are represented as the mean  S.D. of three individual experiments. ∗p < 0.05 compared with 

the control group. 
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5.3.2. Effect of hexane fraction on autophagosome formation and autophagy flux 

To confirm whether the hexane fraction inhibits autophagy, we investigated the effect of 

hexane fraction on the expression levels of both LC3-II and p62. The cells were treated with 

hexane fraction at 5 μg/mL for various time periods, and the levels of each protein were 

examined using western blotting. As shown in Fig. 5.4, the hexane fraction treatment clearly 

increased the levels of both LC3-II and p62. These results suggest that the hexane fraction 

deregulates the autophagic pathway by blocking autophagic flux, thereby resulting in the 

accumulation of p62 and LC3-II. 

 

 

 

 

 

 

 

Figure 5.4. Effect of hexane fraction on LC3-II and p62 expression levels. HepG2 cells 

were treated with hexane fraction prepared from the crude extract of Mokko at 5 μg/mL for 

the times indicated. The expression levels of LC3B, p62, and β-actin were determined by 

western blotting. The data shown are representative of three independent treatments using 

the same parameters with similar results. 
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5.3.3. TLC and HPLC analyses of CL, DCL, MeOH extract, and fractions 

Next, we confirmed the presence of major compounds in the hexane fraction. The 

confirmation test by TLC based on the Japanese Pharmacopoeia, and HPLC demonstrated that 

the hexane and EtOAc fractions mainly contained CL and DCL (Fig. 5.5 and 5.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. TLC analysis of CL, DCL, MeOH extract, and fractions. TLC silica gel plate 

was visualized by spraying with 10% aq. sulfuric acid, which was followed by heating. 

Solvent; Hexane:Acetone = 7:3 
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5.3.4. Effects of CL and DCL on cell proliferation 

To investigate the effects of CL and DCL on the proliferation of the HepG2 cells, we 

treated the cells with 6.25, 12.5, 25, 50, and 100 μM of CL and DCL for 24 h in the MTT assay. 

As shown in Fig. 5.7, a significant decrease in cell proliferation was observed in the presence 

of CL or DCL. 

 

 

    Figure 5.6. HPLC chromatograms of CL, DCL, MeOH extract, and fractions.  
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5.3.5. Effects of CL and DCL on autophagosome formation and autophagy flux 

We next examined the effects of CL and DCL on the levels of both LC3-II and p62 to 

confirm autophagy. The cells were treated with the CL at 10 μM and with the DCL at 20 μM 

for various time periods. As shown in Fig. 5.8, the CL and DCL treatment clearly increased the 

levels of both LC3-II and p62. These results suggest that CL and DCL trigger autophagy 

inhibition by blocking the autophagic flux, thereby resulting in the accumulation of p62 and 

LC3-II. 

Figure 5.7. Effects of CL and DCL on cell proliferation. HepG2 cells were treated with 

CL and DCL at various concentrations for 24 h (A), and cells were treated with CL and DCL 

(100 µM) for the times indicated (B) and cell proliferations were determined using MTT 

assay. ETP was used as a model for inducing apoptotic cell death against HepG2 cells. The 

data are presented as the mean  S.D. of three individual experiments.p < 0.05 compared 

with the control group. 
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Figure 5.8. Effects of CL and DCL on LC3-II and p62 expression levels. HepG2 cells 

were treated with the indicated concentrations of CL and DCL for 24 h (A), or different 

durations (B). The expression levels of LC3B (A), p62 (B), and β-actin were determined by 

western blotting. BBR (50 M) is a positive control. The data shown are representative of 

three independent treatments using the same parameters with similar results. 
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5.3.6. Effects of CL and DCL on apoptosis-related proteins 

To determine whether the induction of apoptosis is associated with the antiproliferative 

effect of CL and DCL, we examined the effects of CL and DCL on caspase-3 and PARP. We 

used ETP as a positive control [20, 21]. As shown in Fig. 5.9, the CL and DCL weakly induced 

the activation of caspase-3 and PARP. These results suggest that the antiproliferative effect of 

CL and DCL might be partly caused by the induction of apoptosis. 

 

 

 

 

 

  

Figure 5.9. Effects of CL and DCL on the activation of caspase-3 and PARP cleavage. 

HepG2 cells were treated with indicated concentrations of CL and DCL for 12 or 24 h, 

respectively. The expression levels of caspase-3, PARP, and β-actin were determined by 

western blotting. ETP (100 M, 12 h) is a positive control. The data shown are representative 

of three independent treatments using the same parameters with similar results.  
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To determine whether autophagy is involved in the apoptosis-inducing activity of ETP, we 

investigated the effect of ETP on autophagy-related proteins. The cells were treated with ETP 

at 100 μM for various time periods. As shown in Fig. 5.10, ETP treatment clearly increased the 

LC3-II levels. However, ETP had no effect on p62 levels during treatment. These results suggest 

that ETP did not block autophagic flux. 

 

 

 

 

 

  

Figure 5.10. Effects of ETP on LC3-II and p62 expression levels. HepG2 cells were 

treated with ETP at 100 μM for the times indicated. The expression levels of LC3B, p62, 

and β-actin were determined by western blotting. The data shown are representative of three 

independent treatments using the same parameters with similar results. 
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5.4. Discussion 

As described in this chapter, we first determined the fraction of Mokko extract by using 

the antiproliferative activity as an index. Among the four fractions, the non-polar (hexane) to 

low-polar (EtOAc) fractions exerted strong antiproliferative activity, and the hexane fraction 

possessed the strongest antiproliferative activity (Fig. 5.3). Moreover, the hexane fraction 

showed autophagy inhibition by the accumulation of p62 and LC3-II (Fig. 5.4). Next, we 

confirmed the main compounds contained in the hexane fraction. TLC and HPLC analyses 

determined that the major compounds in the hexane and EtOAc fractions were CL and DCL 

(Fig. 5.5 and 5.6), which are widely known to be the primary active compounds in the Mokko 

extract [2]. Both CL and DCL exerted the antiproliferative activity (Fig. 5.7) and deregulated 

the autophagic pathway by blocking the autophagic flux, thereby resulting in the accumulation 

of p62 (Fig. 5.8). In HepG2 cells, CL and DCL weakly induced the activation of caspase-3 and 

the cleavage of PARP (Fig. 5.9), thereby suggesting that CL and DCL might be involved in the 

induction of apoptosis. Taken together, both CL and DCL might exert antiproliferative activity 

with the inhibition of autophagy and induction of apoptosis. Although ETP induced apoptosis, 

ETP did not block autophagic flux because p62 levels were not changed by ETP (Fig. 5.10). 

These findings imply that the mechanisms of actions of CL and DCL are different from that of 

ETP. Further investigations may provide new knowledge into the link between apoptosis and 

autophagy. 
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5.5. Conclusion 

In this chapter, we found that the non-polar (hexane) to low-polar (EtOAc) fractions of 

Mokko exerted exceedingly strong antiproliferative activity and inhibited autophagy on HepG2 

cells. TLC analysis confirmed that CL and DCL were primary sesquiterpene lactones contained 

in the hexane and EtOAc fractions and suppressed the proliferation of HepG2 cells. The 

analysis of autophagy-related proteins by using HepG2 cells demonstrated that CL and DCL 

might inhibit autophagy, thereby leading to the accumulation of p62. Interestingly, CL and DCL 

weakly evoked the activation of caspase-3 and the cleavage of PARP, thereby suggesting that 

the antiproliferative activity by CL and DCL are also partly involved in an apoptotic process.   
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Chapter 6 

Conclusions 

 

Autophagy is involved in cancer development [1–4]. This thesis focuses on the 

identification of natural products that suppress cancer cell proliferation and autophagy 

modulation. Autophagy is important for supporting tumor growth (see page 5, Chapter 1, Fig. 

1.2) [1–4]. The role of autophagy in cancer is complex because it depends on the organ, stage, 

and genetic context of the tumor. To develop future cancer therapy strategies, additional 

research is required to elucidate the role of autophagy in cancer. However, there are currently a 

few reports on compounds that modulate autophagy. For potential clinical applications, the 

identification of compounds that induce or inhibit autophagy is valuable [1, 2, 5–12]. 

Autophagy inducers may provide beneficial therapeutic effects in certain neurodegeneration, 

infection, and cytoprotection [5, 6, 11], whereas autophagy inhibitors have been suggested to 

be beneficial agents for cancer therapy [1, 2, 4–12]. Autophagy inhibitors can be classified 

according to whether their inhibitory step occurs before or after autophagosome formation. 

Many current clinical trials have shown that inhibitors of late-stage autophagy can be used in 

combination with existing anticancer drugs to overcome resistance and that this combination is 

very beneficial (see page 8, Chapter 1, Table 1.1) [4, 11, 12]. Moreover, both late- and early-

stage interventions are required to achieve a more efficient inhibition of autophagy in order to 

establish a broader and more flexible cancer therapy strategy. Recent studies have shown that 

natural products have beneficial effects on cancer therapy by inhibiting autophagy [13-17]. 

These results suggest that identification of autophagy modulators from natural products that 

both induce and inhibit autophagy is important for cancer therapy.  

The primary goal of this thesis was to discover crude extracts that suppress both cancer 
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proliferation and autophagy. In Chapter 2, we screened 130 kinds of crude drugs by western 

blotting to monitor LC3-II levels. Some research used ELISA to observe LC3 because the 

method of ELISA is simple and rapid. However, it is difficult to distinguish between LC3-I and 

–II by ELISA. On the other hand, western blotting can determine the precise effects of 

compounds on LC3-II. Thus, we employed the western blotting. We found that 24 crude extracts 

increased the levels of LC3-II. Crude extracts prepared from Goboshi (burdock fruit), Soboku 

(sappan wood), Mokko (saussurea root), Rengyo (forsythia fruit), and Hikai (dioscorea) 

significantly suppressed the proliferation of HepG2 cells and increased the levels of p62, 

suggesting that these crude extracts inhibited autophagy. In contrast, crude extracts prepared 

from Hishinomi (water chestnut), Biwayo (loquat leaf), and Binroji (areca) induced cell growth 

and decreased or did not affect the levels of p62. These results suggested that these crude 

extracts induced autophagy contributing to cell growth (Fig. 6.1). These results further indicate 

that the compounds contained in these crude extracts may modulate cell proliferation and 

autophagy in HepG2 cells. Simultaneously, these active compounds may lead to the 

development of new anticancer drugs as autophagy modulators and to provide new reagents for 

autophagy research. 
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The second goal of this thesis was to identify the major active compounds that suppress 

autophagy and cell proliferation from the crude extracts and to elucidate their molecular 

mechanisms of autophagy inhibition. 3-MA and CQ have been reported to suppress autophagy 

and cell proliferation in HepG2 cells [18, 19]. In addition, HCQ, an analog of CQ, is used for 

clinical trials to develop anticancer drug (see page 7, chapter 1) [4, 11, 12] . Therefore, this 

thesis focused on identifying compounds suppress autophagy and cell proliferation, like 3-MA 

and CQ.  

In Chapter 3, we demonstrated the effects of ARG, a bioactive lignan contained in both 

Goboshi and Rengyo extracts, on cell proliferation and autophagy-related proteins. ARG 

suppressed the proliferation of HepG2 cells. Analysis of autophagy-related proteins in HepG2 

and MCF-7 cells demonstrated that ARG suppressed autophagy leading to the accumulation of 

Figure 6.1. Schematic illustrating the results of screening using crude extract library. 
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p62. The stages of autophagy suppressed by ARG differed from those by 3-MA or CQ. Further, 

ARG suppressed starvation-induced autophagy. In contrast, ARG did not affect caspase-3 

activation and PARP cleavage, suggesting that the antiproliferative activity of ARG was 

independent of caspase-3-mediated apoptosis. Taken together, we conclude that ARG 

suppressed cell proliferation and autophagy. 

In Chapter 4, we demonstrated that the medium-polar (n-BuOH) to high-polar (H2O) 

fractions of Hikai exerted strong antiproliferative activity and inhibition of autophagy on 

HepG2 cells. Phytochemical investigations of the most active n-BuOH fraction achieved the 

isolation of two spirostan-type steroidal saponins, dioscin (DC, 1), yamogenin 3-O--L- 

rhamnopyranosyl (1→4)-O--L-rhamnopyranosyl(1→2)--D-glucopyranoside (YG, 2), and a 

frostane-type steroidal saponins, protodioscin (PDC, 3). Further, acid hydrolysis of 1 and 2 

produced the aglycones diosgenin (4) and yamogenin (5), respectively. Compounds 1–5 all 

suppressed the proliferation of HepG2 cells. The analysis of structure-activity relationships 

indicated that the 25(R)-conformation, structures with a sugar moiety, and the spirostan-type 

aglycone moiety contributed to antiproliferative activity. Analysis of autophagy-related 

proteins demonstrated that 1–3 inhibited autophagy. In contrast, 1–3 did not significantly affect 

caspase-3 activation and PARP cleavage, suggesting that the antiproliferative activity of 1–3 

occurred independently of caspase-3-mediated apoptosis. We conclude therefore that 1–3, the 

active compounds from Hikai extracts, suppressed cell proliferation and autophagy. 

In Chapter 5, we demonstrated that the non-polar (hexane) to low-polar (EtOAc) fractions 

of Mokko exerted strong antiproliferative activity and inhibition of autophagy in HepG2 cells. 

TLC and HPLC analyses showed CL and DCL were major sesquiterpene lactones contained in 

the hexane and EtOAc fractions. CL and DCL suppressed the proliferation of HepG2 cells. 

Analysis of autophagy-related proteins demonstrated that CL and DCL inhibited autophagy. 

Moreover, CL and DCL weakly activated caspase-3 and cleaved PARP, suggesting that the 
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antiproliferative activity of CL and DCL were involved in apoptosis. We conclude that CL and 

DCL suppress cell proliferation and autophagy, and also induce apoptosis. 

In summary, this thesis reports the discovery of six autophagy-inhibiting compounds 

(Table 6.1) that suppressed cell proliferation of HepG2 cells. However, each compound had 

different characteristics in terms of the stages of autophagy inhibition and the involvement of 

apoptosis (Fig. 6.2). 

 

 

Table 6.1. List of autophagy-inhibiting compounds identified in this thesis. 

Compound name 
Content 

crude drug 

IC50 

（µM） 
Chapter 

ARG Arctigenin 
Goboshi 

Rengyo 
> 100 3 

DC Dioscin Hikai 4.09 4 

YG 

Yamogenin 3-O--L-rhamnopyranosyl 

(1→4)-O--L-rhamnopyranosyl 

(1→2) --D-glucopyranoside 

Hikai 15.63 4 

PDC Protodioscin Hikai 34.51 4 

CL Costunolide Mokko 70.68 5 

DCL Dehydrocostuslactone Mokko 25.36 5 

 The IC50 value of each compound at 24 h treatments on cell proliferation. 
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ARG in both Goboshi and Rengyo extracts inhibited the early-stage of autophagy. In 

contrast, the other five compounds inhibited the late-stage of autophagy. DC (1) and YG (2) in 

Hikai extract strongly suppressed cell proliferation. DC (1) and YG (2) were not involved in 

apoptosis-related proteins, suggesting that antiproliferative activity of DC (1) and YG (2) 

occurred independently of caspase-3-mediated apoptosis. In addition, although PDC (3) also 

inhibited the late-stage of autophagy, its antiproliferative activity was weaker than that of DC 

Figure 6.2. Summary of autophagy-inhibiting compounds identified in this thesis. 

The antiproliferative efficacy of each compound was compared based on IC50 values at 

24 h treatments. 
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(1) and YG (2). Moreover, CL and DCL in Mokko extract triggered the activation of apoptosis-

related proteins suggested that CL and DCL have dual functions of autophagy inhibition and 

apoptosis induction.  

The screening protocol used in this thesis is not suitable for identifying crude extracts that 

inhibit the early-stage of autophagy. In fact, five crude extracts selected for screening increased 

the levels of both LC3-II and p62, which are characteristics of late-stage inhibition of autophagy. 

Nevertheless, based on the results presented in Chapter 3, we concluded that ARG inhibits the 

early-stage of autophagy. Thus, this screening method may have some flexibility. This 

flexibility is particularly useful in research fields with many unclear points such as the study of 

autophagic activity.  

In Chapter 3, we demonstrated that ARG suppressed cell proliferation and autophagy in 

HepG2 cells. Suresh et al. screened 500 medicinal plant extracts used in Kampo medicines. 

They found that a CH2Cl2-soluble extract of Goboshi preferentially suppresses the survival rate 

of cancer cells under nutritional deficiency. In addition, they reported that ARG isolated from 

the Goboshi extract strongly suppresses the growth of several pancreatic cancer cell lines [20]. 

In Japan, ARG has already been developed as investigational drug GBS-01, which is an ARG-

rich Goboshi extract containing ≥ 3% ARG. A phase I/II study of GBS-01 has been performed 

in patients with gemcitabine-refractory advanced pancreatic cancer. The clinical safety and 

potential benefits of GBS-01 monotherapy were confirmed in patients with advanced pancreatic 

cancer refractory to gemcitabine therapy [21, 22]. The detailed method for the preparation of 

GBS-01 is reported in patent document JP-4963738-B2. These data strongly support our results 

showing that ARG has potential applications in the development of anticancer agents.  

Ongoing clinical trials for cancer therapy are assessing the safety and efficacy of CQ and 

HCQ, which inhibit the late-stage autophagy [11]. In this thesis, DC (1), YG (2), PDC (3), CL, 

and DCL inhibit the late-stage of autophagy. The chemical structures of these compounds differ 
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from existing those of drugs used as inhibitors of autophagy, which may lead to the development 

of new autophagy inhibitor. Although HepG2 cells have been reported to be resistant to 

apoptosis [23], CL and DCL inhibited autophagy and induced apoptosis in HepG2 cells. There 

are few reports on such compounds having both activities. Thus, further research is required to 

determine the functions of CL and DCL using different cancer cell lines. 

In this thesis, we focused on the effects of each compound on autophagy, cell proliferation, 

and apoptosis. Although it is known that autophagy is related with cell cycle, we could not 

determine the effects of each compound on cell cycle [24, 25]. Future studies are needed to 

elucidate the cell cycle. 

In conclusion, autophagy-inhibiting compounds found in this thesis may contribute to the 

development of new anticancer drugs and serve as new analytical tools for autophagy research. 

We hope that the research approach described in this thesis, which screened for potential drugs 

focusing on crude drugs, will contribute to the discovery of new and improved therapies for 

diverse diseases.   
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